Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Current Drug Therapy ; 16(4):364-380, 2021.
Article in English | Scopus | ID: covidwho-1594708

ABSTRACT

Background: The coronavirus disease 2019 (COVID-19) is a contagious disease originating from Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Previous experimental studies indicated that during viral infections, viral miRNAs (vmiRNAs) played key roles in pathogen-host interaction, immune escape, host cell death, and tumorigenesis. MiRNAs are small, single-stranded RNAs that exist in viruses as well as in animals. Thus, these molecules can play a pivotal role in viral disease pathogenesis. Objective: Since no approved drugs or vaccines currently exist for SARS-CoV-2 and its pathogenic mechanism is unknown, the present study aimed to explore and propose vmiRNA platforms as potential antiviral therapeutic agents against SARS-CoV-2. The development of antiviral drugs to target vmiRNAs may result in the down-regulation of viral virulence genes expression and suppression of viral proliferation. Methods: In this study, to attain insight into the potential role of SARS-CoV-2-derived miRNAs in viral infections, a set of computational methods was used to scan the SARS-CoV-2 genome, eventually predicting 13 potential candidate vmiRNAs. Furthermore, the potential genes were predicted in the human hosts that were the target of these candidate vmiRNAs by applying the mirPath software. Results: This study proposed a theory indicating that the predicted vmiRNAs might have a plausible role in altering human target gene expression, mainly contributing to a viral infectious state, inflammation, and immune system escape. These vmiRNAs might have therapeutic trends as antiviral agents against COVID-19 infection. Conclusion: The findings offered a reference idea for a supplementary study on miRNA identification as a drug target and revealed the necessity to increase the understanding of SARS-CoV-2 genome structure for a better combat against the virus. © 2021 Bentham Science Publishers.

SELECTION OF CITATIONS
SEARCH DETAIL